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This document is intended for physicists who are learning tensors for
the first time in classical theories such as electrodynamics or continuum
mechanics.

Tensors are often introduced with the following sentence: “tensors are
objects that transform like tensors”. This is obviously not very illuminating,
and we are going to take a more mathematical view, maybe less common
among physicists. The alternative obscure sentence will now be “tensors are
multilinear objects”. It is obscure because it is abstract, but it shouldn’t
bother you if you already accepted the definition of a vector you saw in
linear algebra.

I’m going to assume you know what a vector space is, and in fact, we’ll
start our journey with R-vector spaces (V1, . . . , Vk,W ) which will accompany
us all along. The same exact document could be written with fields other
than R, but R will be of main interest in classical electrodynamics. Vector
spaces on C are really important in quantum mechanics.

Section 1.1 can be read superficially if you don’t care about the formal
construction. It will be of no use in most of physics, but it may help some
put their minds in order.

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 In-
ternational” license.

1

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Contents

1 Formal definitions 4

1.1 Tensor product . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Explicit construction . . . . . . . . . . . . . . . . . . 5

1.1.3 Basis of the tensor product . . . . . . . . . . . . . . . 6

1.1.4 Multilinear property . . . . . . . . . . . . . . . . . . . 7

1.1.5 Universal property . . . . . . . . . . . . . . . . . . . . 7

1.2 Dual vector space – Alternative definition of the tensor product 8

1.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Basis for the dual space . . . . . . . . . . . . . . . . . 8

1.2.3 Link with inner product and metric . . . . . . . . . . 9

1.2.4 Alternative definition of tensors (very important) . . . 10

1.2.5 A last important isomorphism . . . . . . . . . . . . . 10

1.2.6 Partial application argument . . . . . . . . . . . . . . 12

1.2.7 Examples of tensors . . . . . . . . . . . . . . . . . . . 13

1.2.8 Elements from category theory . . . . . . . . . . . . . 13

2 Transformation rules 14

2.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Vector spaces in physics . . . . . . . . . . . . . . . . . 14

2.1.2 Change of basis . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Transformation of components . . . . . . . . . . . . . 15

2.2 Covectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Change of basis . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Transformation of components . . . . . . . . . . . . . 17

2



2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Physics convention . . . . . . . . . . . . . . . . . . . . 18

2.4 More general tensors . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Basis of physical tensor product space . . . . . . . . . 18

2.4.2 Linear transformation . . . . . . . . . . . . . . . . . . 19

2.4.3 General case . . . . . . . . . . . . . . . . . . . . . . . 20

3



1 Formal definitions

1.1 Tensor product

1.1.1 Motivation

The whole idea of tensors comes from considering multilinear functions:

A : V1 × · · · × Vk → W

(v1, . . . ,vk) 7→ A(v1, . . . ,vk)

A(v1, . . . ,vi + λv′
i, . . . ,vk) = A(v1, . . . ,vi, . . . ,vk)

+ λA(v1, . . . ,v
′
i, . . . ,vk).

(1)

The general remark is that there are many different n-tuples in V1 ×
· · · × Vk that map to the same w ∈ W regardless of the choice of A. For
example, (x1, . . . λxi, . . . ,xk) and (x1, . . . , λxj, . . . ,xk) are mapped to the
same element because of the multilinear property.

What we would like to achieve is to build a new space, which we’ll call the
tensor product V1 ⊗ · · · ⊗ Vk, in which there are exactly “enough” elements
such that, for any two elements in it, you can always fine a function f that
maps them to different w’s in W . So we see that, in that sense, V1×· · ·×Vk

contains to many elements.

The other thing we would like to do is to transform this multilinear
property, which is slightly annoying, into a simple linear property. The idea
is that we may try to write

T = [(v1, . . . ,vi + λv′
i, . . . ,vk)]

= [(v1, . . . ,vi, . . . ,vk)] + λ[(v1, . . . ,v
′
i, . . . ,vk)]

= T1 + λT2

(2)

with T , T1 and T2 in V1 ⊗ · · · ⊗ Vk, and [u] denoting the tensor associated
with the tuple u, whatever + will mean (we will formalize this in a moment).
If we achieve this, the relation (1) simply becomes

Ã : V1 ⊗ · · · ⊗ Vk → W

T → A(T )

Ã(T1 + λT2) = Ã(T1) + λÃ(T2)

(3)
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There is a last problem (I promise): for each space Vi, take any pair of
elements ui and vi. Consider the two following:

A(u1 + v1, . . . ,uk + vk)
?
= A(u1, . . . ,uk) + A(v1, . . . ,vk). (4)

There is absolutely no reason to except them to be equal. We cannot
apply (1) to go from one to the other. In fact, for a tuple u = (u1, . . . ,uk),
take a multilinear function A such that A(u) ̸= 0. Take vi = ui. You then
have

A(2u1, . . . , 2uk) = 2kA(u) ̸= A(u1, . . . ,uk) + A(u1, . . . ,uk) = 2A(u). (5)

Even worse, if the vi are linearly independent of the ui, you can show
(you can do that if you’re into that kind of stuff) that you can always find
some multlinear function f such that

A(u1, . . . ,uk) + A(v1, . . . ,vk) ̸= A(u) ∀u ∈ V1 × · · · × Vk. (6)

However, the associated tensors

T1 = [(u1, . . . ,uk)] and T2 = [(v1, . . . ,vk)]

must satisfy
Ã(T1) + Ã(T2) = Ã(T1 + T2) (7)

with T1 + T2 being another tensor. The above argument means that the
tensor T1 + T2 cannot be associated with any tuple from V1 × · · · × Vk.

All of this means that V1 × · · · × Vk is a really bad way of representing
V1⊗· · ·⊗Vk, because it both has too many elements ([(a1, . . . , λui, . . .uk)] =
[(u1, . . . , λuj, . . . , ak)]) and misses some elements (∀u, [u] ̸= T1 + T2).

1.1.2 Explicit construction

To construct V1 ⊗ · · · ⊗ Vk, we will first fill in all the missing elements, and
then remove all the duplicate. This is surprisingly easy.

The first step simply consist in considering the set F(V1 × · · · × Vk) of
all possible formal sums of tuple in V1 × · · · × Vk. This means that we are
looking at strings of tuples that we sum with each other

λ1(u1, . . . ,uk) + λ2(v1, . . . ,vk) + · · ·+ λn(w1, . . . ,wk) (8)
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but we never really think about what the + is meaning. We simply look at
the string of character as the object we are manipulating. Formally F(S) is
the set of all functions

g : S → R (9)

that are non-zero for only finitely many values of S. We can then write any
element like (8) in the form∑

i

g(ui)ui, ui ∈ V1 × · · · × Vk. (10)

Now that we have filled in the missing elements, we are going to subtract
all the duplicates. Consider the following equivalence relation:

(v1, . . . ,vi + λv′
i, . . . ,vk) ∼ (v1, . . . ,vi, . . . ,vk) + λ(v1, . . . ,v

′
i, . . . ,vk)

(11)

The final tensor product is finally given by all the equivalence classes
under this relation:

V1 ⊗ · · · ⊗ Vk = F(V1 × · · · × Vk)/ ∼
= {[u]∼ | u ∈ F(V1 × · · · × Vk)}

[u]∼ = {v ∈ F(V1 × · · · × Vk) | v ∼ u}.
(12)

The equivalence class of a given tuple in V1×· · ·×Vk is more commonly
written by

[(v1, . . . ,vk)]∼ = v1 ⊗ · · · ⊗ vk ∈ V1 ⊗ · · · ⊗ Vk. (13)

Some elements of V1 ⊗ · · · ⊗ Vk can be written in that form. They are
called pure tensors. But some elements cannot, because of the previous
argument, and they necessarily have to be written as a sum of pure tensors.

1.1.3 Basis of the tensor product

It should be clear that it follows directly from its construction that the tensor
product is a vector space in its own right. It can be shown that, if we have
a basis (ej)i for each Vj, we directly get a basis for V1 ⊗ · · · ⊗ Vk for free,
given by the set of pure tensors

{(e1)i1 ⊗ · · · ⊗ (ek)ik | 1 ≤ i1 ≤ dimV1, . . . , 1 ≤ ik ≤ dimVk}. (14)
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Using Einstein’s summation convention, this let us write any tensor T ∈
V1 ⊗ · · · ⊗ Vk as

T = Ti1...ik(e1)i1 ⊗ · · · ⊗ (ek)ik, Ti1...ik ∈ R. (15)

1.1.4 Multilinear property

Because of the equivalence relation construction, by writing

T = v1 ⊗ · · · ⊗ (vi + λv′
i)⊗ · · · ⊗ vk

T1 = v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vk

T2 = v1 ⊗ · · · ⊗ v′
i ⊗ · · · ⊗ vk

(16)

we automatically get the following property on tensors:

T = T1 + λT2. (17)

This finally shows us why tensor are useful as we’ll see in the following
section.

1.1.5 Universal property

If we define the value of Ã for pure tensors to be

Ã(v1 ⊗ · · · ⊗ vk) = A(v1, . . . ,vk), (18)

and for non-pure tensors to be

Ã(T1 + T2) = Ã(T1) + Ã(T2), (19)

it is very easy to show that the multilinearity condition on A transfers to a
simple linearity condition on Ã:

Ã(T1 + λT2) = Ã(T1) + λÃ(T2), ∀T1, T2 ∈ V1 ⊗ · · · ⊗ Vk. (20)

For those among you loving abstract nonsense, this is called a univeral
property, and is associated with the following commutative diagram:

V1 × · · · × Vk W

V1 ⊗ · · · ⊗ Vk

A

π
Ã

where π(v1, . . . ,vk) = v1 ⊗ · · · ⊗ vk.
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1.2 Dual vector space – Alternative definition of the
tensor product

1.2.1 Definition

You should all have seen the definition of the dual of vector space V . It is
another vector space V ∗ containing all linear forms:

V ∗ = L(V,R) = {f : V → R | f(v1 + λv2) = f(v1) + λf(v2)} (21)

Elements of V ∗ are also called covectors for a reason explained in section
1.2.8.

You may have seem that the dual of the dual of a space is the original
space. More precisely, (V ∗)∗ ∼= V . The means that we can instead define V
to be (up to isomorphism):

V ∼= L(V ∗,R). (22)

This seemingly random fact will appear to be very important to get some
intuition of why tensors are used in physics.

1.2.2 Basis for the dual space

As you may have seen, V ∗ is isomorphic to V . However, there is no special
way of choosing this isomorphism, and there is an infinite number of equiv-
alent isomorphisms between V and V ∗. However, if we fix a basis in V , it
tells us a preferred way of choosing this isomorphism, called the canonical
isomorphism.

Let’s call ei the basis of V , with 1 ≤ i ≤ dimV (we’ll omit the mention
of the interval in which i lies from now on, and simply write the set of basis
vectors as ei). We can define a basis εj (don’t think too much about the
upper and lower indices for now) in V ∗ by imposing

εj(ei) = δji . (23)

Because any linear function on V is uniquely determined by the value
it takes on all basis elements of V , all εj are uniquely determined. The
canonical isomorphism between between V and V ∗ is now given by the unique
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(by the same argument) linear map

π : V → V ∗

viei 7→ viεi
(24)

1.2.3 Link with inner product and metric

An inner product, also known as a metric, is a positive definite and symmetric
bilinear form:

g : V × V → R
(v1,v2) 7→ g(v1,v2).

(25)

We may use any of the following notation:

g(v1,v2) = v1 · v2 = ⟨v1|v2⟩. (26)

You should note that in physics, the positive definite assumption is often
ignored, as, for example, the Minkowski metric can be negative.

The interesting thing about g is that it gives yet another isomorphism1

between V and V ∗, given by

g : V → V ∗

v 7→ g(v, ·), (27)

where g(v, ·) is the linear form

V → R
u 7→ g(v,u).

(28)

Because it is an element of V ∗, we can write it in the basis εj, and decompose
v in the basis ei:

g(v, ·) = g(viei, ·) = vig(ei, ·) ≡ vjε
j (29)

This is precisely the definition of the relation between vi and vi, and we
will see how this generalizes below.

Moreover, we can see that we can either see g as a linear map V ×V → R
or V → V ∗. This idea is of great importance to understand intuitively what
tensors are and why we use them in physics, and will be developped in the
following section.

1It’s an isomorphism if and only if the metric is positive definite. Since the Minkowski metric is not
positive definite, it has a non-zero kernel and therefore maps some vectors to the trivial linear form 0.
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1.2.4 Alternative definition of tensors (very important)

What is really interesting is that we can show without too much work that

V ∗ ⊗ V ∗ ∼= L(V × V,R). (30)

The general idea is that you can show any bilinear map V × V → R can
be represented by the sum of products of two linear maps V → R in the
following way:

f(u,v) =
k∑
i

gi(u)hi(v) (31)

Next, because of the multilinear property, we will have many different ways
to represent your bilinear map as a sum of product of two linear maps. In
the end, the family of all the different way of representing the same bilinear
map will look exactly the same as the equivalence relation defined in (11),
and the isomorphism with V ∗ ⊗ V ∗ will be trivial.

We can then extend the argument to show that

V ∗ ⊗ · · · ⊗ V ∗ ∼= L(V × · · · × V,R), (32)

and by using the fact that V ∼= (V ∗)∗ = L(V ∗,R), we immediately deduce
that

V ⊗ · · · ⊗ V ∼= L(V ∗ × · · · × V ∗,R), (33)

and finally that

Equivalent definition

V ⊗ · · · ⊗ V︸ ︷︷ ︸
p copies

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q copies

∼= L(V ∗ × · · · × V ∗︸ ︷︷ ︸
p copies

×V × · · · × V︸ ︷︷ ︸
q copies

,R).

(34)

Elements of this tensor product space are called (p, q)-tensors of rank
(p+ q), or p-times contravariant and q-times covariant tensors, for a reason
that for now should be totally obscure, but that we’ll explain in section 2.

1.2.5 A last important isomorphism

We will now give a last isomorphism which really is the highlight of the show
(or one of them):
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An important isomorphism

L(V ∗ × · · · × V ∗︸ ︷︷ ︸
p copies

×V × · · · × V︸ ︷︷ ︸
q copies

,R) ∼= L(R, V × · · · × V︸ ︷︷ ︸
p copies

×V ∗ × · · · × V ∗︸ ︷︷ ︸
q copies

) (35)

which is a special case of

L(V ∗ × · · · × V ∗︸ ︷︷ ︸
p1 copies

×V × · · · × V︸ ︷︷ ︸
q1 copies

, V × · · · × V︸ ︷︷ ︸
p2 copies

×V ∗ × · · · × V ∗︸ ︷︷ ︸
q2 copies

)

∼= L(V ∗ × · · · × V ∗︸ ︷︷ ︸
(p1−k) copies

×V × · · · × V︸ ︷︷ ︸
(q1−j) copies

, V × · · · × V︸ ︷︷ ︸
(p2+k) copies

×V ∗ × · · · × V ∗︸ ︷︷ ︸
(q2+j) copies

)
(36)

This looks very ugly in its general form. Ugliness here is just the shear
size of the expression, but what it says is actually pretty simple. It means
that we can swap side for each V and V ∗ and take its dual (exchanging V
and V ∗). Let’s have a look at those isomorphisms for rank 1 and 2 tensors:

V ∼= L(V ∗,R) ∼= L(R, V ) (37)
V ∗ ≡ L(V,R) ∼= L(R, V ∗) (38)

V ⊗ V ∼= L(V ∗ × V ∗,R) ∼= L(V ∗, V ) (39)
V ∗ ⊗ V ∗ ∼= L(V × V,R) ∼= L(V, V ∗) (40)
V ⊗ V ∗ ∼= L(V ∗ × V,R) ∼= L(V, V ) (41)

The first two are not really important, but are almost trivial to show.
Here is the explicitly constructed isomorphism:

V (∗) → L(R, V (∗))

v 7→

{
R → V (∗)

λ 7→ av

(42)

The last last two are very useful in that they appear very often in physics.
We’ll discuss them seperately and give an explicit construction of the iso-
morphism.

1. The first says that (0, 2)-tensors, bilinear forms (bilinear maps that
map a pair of vectors to a scalar) can also be seen as maps between V
and V ∗. We already saw this in section 1.2.3. From a bilinear map

f : V × V → R, (43)
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we can build a map
f̃ : V → V ∗

v 7→ f(v, ·).
(44)

If f is positive definite then f̃ is an isomorphism between V and V ∗

and gives a way to transform a vector into a covector.

2. The second one says that (1, 1)-tensors really are linear maps (also
called endomorphisms). They are extremely important, and you’ll have
seen them all over the place in physics. To construct the isomorphism,
we’ll use the same idea, and transform our bilinear map

f : V ∗ × V → R
(β,v) 7→ f(β,v)

(45)

into
f̃ : V → L(V ∗,R)

v 7→ (·,v).
(46)

We’ll use our isomorphism between L(V ∗,R) and V to conclude the
proof.

1.2.6 Partial application argument

Both previous result can be interpreted in the following way: a (0, 2)-tensor
is something that wants to eat to vector. You can either feed it two vectors
and it will spit you back some number, or you can feed it one vector and it
will spit you something that want to eat a second vector. At the end, the
number of vectors that something want to eat is the same: two.

For (1, 1)-tensor, it something that wants to eat one vector and one
covector. You can feed it only one vector and it will spit you something
that wants to eat a covector. But that’s precisely what vector are, they are
covector eaters. So, really, your tensor can also be seen as eating one vector
and spitting back another vector: a linear application.

We can generalize both previous result to prove the general case (36).
We transform our linear map

f : V ∗ × · · · × V ∗︸ ︷︷ ︸
p1 copies

×V × · · · × V︸ ︷︷ ︸
q1 copies

×V [∗] → V × · · · × V︸ ︷︷ ︸
p2 copies

×V ∗ × · · · × V ∗︸ ︷︷ ︸
q2 copies

(β1, . . . ,βp1 ,v1, . . . ,vq1 ,β) 7→ f(β1, . . . ,βp1 ,v1, . . . ,vq1 ,β)

(47)
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into
f : V ∗ × · · · × V ∗︸ ︷︷ ︸

p1 copies

×V × · · · × V︸ ︷︷ ︸
q1 copies

→ L(V [∗], V × · · · × V︸ ︷︷ ︸
p2 copies

×V ∗ × · · · × V ∗︸ ︷︷ ︸
q2 copies

)

(β1, . . . ,βp1 ,v1, . . . ,vq1) 7→ f(β1, . . . ,βp1 ,v1, . . . ,vq1 , ·)
(48)

Finally, we have to show that the codomain is equivalent to the one we need
to obtain. It will be shown in the same way as everything else, but with a
subtle technicality, which I don’t think you are interested in.

This argument is called partial application, as we didn’t feed our function
with all of its argument, but we volontarily missed one. This in turn gives a
new function that takes this missing argument and gives the same result as
if we had not forgotten the missing argument in the first place.

1.2.7 Examples of tensors

(1, 0)-tensors are just vectors (0, 1)-tensors covectors. I don’t think you
need any example of why vectors are important, but covectors usually don’t
appear on their own. You will typically see them constructed from vectors by
using a metric, as discussed in section 1.2.3. They also appear as differential
form in differential geometry, which are the dx you are integrating, but a
formal introduction to this would take some time.

(1, 1)-tensors are linear application, and an example of this is the inertia
tensor in rigid body mechanics.

(0, 2)-tensors are bilinear forms, of which the greatest example is the
metric, be it the Minkowski metric of flat spacetime, the euclidean metric of
Newtonian mechanics or more exotic metrics in general relativity.

Finally, the electromagnetic tensor F µν is a (2, 0) tensor, that eats a cov-
ector (typically a derivative ∂µ) and spits a vector (with Maxwell’s equation
∂µF

µν = Jν).

Don’t think to hard about the equations at this point.

1.2.8 Elements from category theory

The previous isomorphism theorem can be interpreted as exchanging the
direction of arrows (swapping domain and codomain) in the category of ten-
sors and swapping vector spaces with their dual space. Everytime we do such
things in category theory, we like to add a prefix co- (domain, codomain),
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and it’s precisely the reason of the name “covectors” for the elements of the
dual space.

2 Transformation rules

We will now see why physicists say that “tensors are object that transform
like tensors”. Einstein’s summation convention on repeated indices will be
used throughout.

2.1 Vectors

2.1.1 Vector spaces in physics

We saw that a general tensor is an element of a tensor product space V1 ⊗
· · · ⊗ Vk. In physics, we will only consider Vi to be either V or V ∗. V will
typically be spacetime, a 4-dimensional real vector space.2 The basis of V
will correspond to the directions that a given observer would call time and
the three directions of space. We won’t think about curvilinear coordinates,
so in our case, our vectors are just pointing in the direction of coordinate
lines. For example, ex is tangential to the line of constant y, z, and t (this
last sentence is true even for curvilinear coordinates).

If you want your basis to be physically meaningfull, you don’t have com-
plete freedom of choice. If you select any three direction in spacetime, and
you call them space, your are forced to select the fourth one if you want it to
be purely oriented in time and towards the future for some physical observer,
as to not violate special relativity. Moreover, you cannot select any arbitrary
direction and call it space, you can only choose among space-like points of
spacetime.

2.1.2 Change of basis

There are two ways of seeing a change of reference frame in physics:

• either you are transforming each vectors from V into a new vector of
a new vector space V ′, and now, two observers would disagree on the

2In reality, spacetime in general relativity is a Riemannian manifold, and the vector space we are
looking at is only the tangent space at a given point. Don’t worry about it now.
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different vectors, and, for example, the same spacetime event would be
associated to two different vectors of their respective vector spaces,

• or each physical things (spacetime events, fields, forces) is associated
to a unique vector of V , independent of the observer, and two different
observers would simply use a different basis of V and thus get different
component for each vector, but would agree on the vectors themselves.

The second point of view is the one more commonly seen in physics.

We take now two different basis ei and ẽi of V , and take an arbitrary
vector v ∈ V . You can show that you can always find an invertible linear
map A : V → V such that

ẽi = A(ei). (49)

Because of the property of a basis, we can always write

v = viei = ṽjẽj. (50)

You still don’t have to worry about upper and lower indices.

2.1.3 Transformation of components

Our goal will now be to relate vi and ṽj. This will teach us how to change
our reference frame. We will first express ẽj in term of the basis ei:

ẽj = A(ej) = Ai
jei = (AT ) i

j ei. (51)

For now, think of Ai
j to be equivalent to Aij, the matrix component of the

linear application A in the basis ek. If you are not convinced about the order
that I put the indices in, and you think it is not consistent with how you
know matrix multiplication is defined, we compute

w = A(u) = A(ujej) = ujA(ej) = ujAi
jei (52)

wiei = Ai
ju

jei (53)
wi = Ai

ju
j, (54)

which really is consistent with the definition of matrix multiplication. In-
deed, matrix multiplication acts on column-vectors that contains vector com-
ponents in Rn and not vectors in V , and in fact, your matrix has to be
transposed when you act on basis vectors instead of components.
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Now, we can finally relate vi and ṽj:

viei = ṽjẽj (55)
= ṽjA(ej) (56)
= ṽjAi

jei (57)
vi = Ai

j ṽ
j (58)

ṽj = (A−1)jiv
i (59)

We can finally understand the origin of the word “contravariant”: vector
components transform with the inverse transormation that transform basis
vectors, they “vary contrary” to basis vectors.

2.2 Covectors

We’ll now do the same for covectors, the vectors of the dual space V ∗. We
recall that we can construct a basis εj in V ∗ from a basis of V by imposing

εj(ei) = δji . (60)

2.2.1 Change of basis

If we change our basis of V to ẽi, we would like to change our basis of V ∗ to
ε̃j as to still satisfy

ε̃j(ẽi) = δji (61)

This yields

ε̃j(A(ei)) = δji (62)
ε̃j(Ak

iek) = δji (63)
ε̃j(ek)A

k
i = δji . (64)

We express ε̃j in the εl basis:

ε̃j = X j
l εl. (65)

The X j
i are for now a set of unkown constant, and the choice of labeling

them with upper and lower indices should seem arbitrary now, but will be
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clear later. Plugging this into (64) gives

X j
l εl(ek)A

k
i = δji (66)

X j
l δlkA

k
i = δji (67)

X j
k Ak

i = δji (68)

This, in matrix notation, is completly equivalent to (and you’re encourage
to verify that)

XTA = 1 ⇔ X = A−T (69)

where A−T means that we take both the conjugate and the inverse of A.

Plugging this into (60), this means that the transformation rule for basis
covectors is

ε̃j = A−T (εj) = (A−T ) j
i ε

i = (A−1)jiε
i (70)

For those greedy of some more abstract nonsense, this precisely reflects
the definition of the transpose of linear map A, which is the unique linear
map AT that makes the following diagram commute:

V W

V ∗ W ∗

A

πV πW

AT

where π are the isomorphisms described in (24).3

2.2.2 Transformation of components

Because V ∗ is a vector space in its own right, we can redo this exact same
derivation as in section 2.1.3, by considering a covector expressed in both εi

and ε̃j = A−T (εj:
α = αiε

i = α̃jε̃
j (71)

The components will transform with the inverse of A−T , which is just AT :

α̃j = (AT ) i
j αi (72)

This tells us why covectors are called covariant, it’s because their com-
ponents “vary with” the basis vectors of V .

3Because the π depends on the choice of basis of V and W , AT will also depend on this choice.
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2.3 Summary

This is important enough to be summarize in a nice table:

Basis elements Components
Vectors ẽi = (AT ) j

i ej ṽi = (A−1)ijv
j

Covectors ε̃i = (A−1)ijε
j α̃i = (AT ) j

i αj

We see that components of vectors transform like basis covectors, and com-
ponents of covectors like basis of vectors. This is pretty much the reason
we write vector components and covectors with upper indices, and covector
components and vectors with lower indices.

2.3.1 Physics convention

In physics, where our change of basis is mostly given by the lorentz trans-
fromation Λ, we often define things slightly in reverse, and write A−1 = Λ,
which gives us the slightly different table

Basis elements Components
Vectors ẽi = (Λ−T ) j

i ej ṽi = Λi
jv

j

Covectors ε̃i = Λi
jε

j α̃i = (Λ−T ) j
i αj

2.4 More general tensors

2.4.1 Basis of physical tensor product space

In physics, we are mostly concerned about tensor product of V and V ∗ only,4
such that we interpret tensors as multilinear transformation of product of V
only. For example, V ⊗ V ∗ is the set of linear map V → V .

We already saw in (14) how to get a basis for a general tensor prod-
uct. If ei is a basis of V and εj is a basis for V ∗, we get a basis of
V ⊗ · · · ⊗ V︸ ︷︷ ︸

p

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q

by the set ei1 ⊗ · · · ⊗ eip ⊗ εj1 ⊗ · · · ⊗ εjq .

4This is not entirely true. In quantum mechanics, we often consider tensor product of arbitrary vector
spaces.
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Any tensor will be expressed as

T = T
i1...ip

j1...jq
ei1 ⊗ · · · ⊗ eip ⊗ εj1 ⊗ · · · ⊗ εjq (73)

By looking at the transformation rule, we’ll finally understand why we place
the indices in such a way.

2.4.2 Linear transformation

We’ll first look at a (1, 1)-tensor in V ⊗ V ∗:

T = T i
jei ⊗ εj. (74)

This can be interpreted as a linear map by the partial application argu-
ment that we discussed in section 1.2.6:

V → V

v 7→ T (v) = T i
jeiε

j(v)
(75)

By writing v = vkek, we get

T (v) = vkT (ek) (76)
= vkT i

jeiε
j(ek) (77)

= vkT i
jeiδ

j
k (78)

= T i
jv

jei (79)

We see at the end that we precisely get the matrix product between the
components of T and v. We would like to know how these components
would have changed had we used a different basis ẽi = A(ei). We’ll first
write v = ṽkẽk with ṽk = (A−1)klv

l, and then express ẽk in term of ei, with
ẽk = Aj

kej:

T (v) = ṽkT (ẽk) (80)
= ṽkT (Aj

kej) (81)
= ṽkAj

kT (ej) (82)
= ṽkAj

kT
i
jei (83)

Finally, we’ll express ei = A−1(ẽi) back in the ẽl basis, with ei = (A−1)l iẽl:

T (v) = Aj
kT

i
j(A

−1)l iṽ
kẽl (84)
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But the matrix expression of T in the ẽi basis is precisely the matrix
such that

T (v) = T (ṽkẽk) = T̃ l
kv

kẽl (85)

thus we must have

T̃ l
k = Aj

kT
i
j(A

−1)l i = (AT ) j
k (A

−1)l iT
i
j (86)

We see that we have to multiply it once by AT and once by A−1, which
justify the name one time contravariant and one time covariant.

I would urge you not to absolutely want to write it in matrix form. This
will force you to write some term on the left or on the right of T , and to
put some random transposes at the right place. In the end, this is only a
matter of convention, but sticking to index notation is much more common
in physics (and I would say, less prone to error).

2.4.3 General case

We will know look at a general (p, q)-tensor

T = T
i1...ip

j1...jq
ei1 ⊗ · · · ⊗ eip ⊗ εj1 ⊗ · · · ⊗ εjq . (87)

Because we know the transformation of each of the basis vectors and
covectors, the result is almost instantaneous. We use the inverse relations
ei = (A−T ) j

i ẽj = (A−1)jiẽj and εi = Ai
jε̃

j = (AT ) i
j ε̃

j:

T = T
i1...ip

j1...jq

(
ei1 ⊗ · · · ⊗ eip ⊗ εj1 ⊗ · · · ⊗ εjq

)
(88)

= T
i1...ip

j1...jq

(
(A−1)k1i1ẽk1 ⊗ · · · ⊗ (A−1)

kp
ip
ẽkp

⊗(AT ) j1
l1
ε̃l1 ⊗ · · · ⊗ (AT )

jq
lq
ε̃lq

) (89)

= T
i1...ip

j1...jq
(A−1)k1i1 . . . (A

−1)
kp
ip
(AT ) j1

l1
. . . (AT )

jq
lq(

ẽi1 ⊗ · · · ⊗ ẽip ⊗ ε̃j1 ⊗ · · · ⊗ ε̃jq
) (90)

≡ T̃
k1...kp

l1...lq

(
ẽi1 ⊗ · · · ⊗ ẽip ⊗ ε̃j1 ⊗ · · · ⊗ ε̃jq

)
(91)

where we used the fundamental multilinear property of tensors to go from
(89) to (90). So, we have the very general transformation rule for its com-
ponent:
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Transformation rule

T̃
k1...kp

l1...lq
= (A−1)k1i1 . . . (A

−1)
kp
ip
(AT ) j1

l1
. . . (AT )

jq
lq
T

i1...ip
j1...jq

(92)

T̃
k1...kp

l1...lq
= Λk1

i1
. . .Λ

kp
ip
(Λ−T ) j1

l1
. . . (Λ−T )

jq
lq
T

i1...ip
j1...jq

(93)

So, we see that for each p upper indices, we have p repeated A−1 factors
(or Λ in physics convention), and for each q lower indices q repeated AT

factors (or Λ−T in physics). It is thus p times contravariant, and q times
covariant.

We could have use the proof we did in this section to prove the special
case of linear transformations of the previous section much more easily.

21


	Formal definitions
	Tensor product
	Motivation
	Explicit construction
	Basis of the tensor product
	Multilinear property
	Universal property

	Dual vector space – Alternative definition of the tensor product
	Definition
	Basis for the dual space
	Link with inner product and metric
	Alternative definition of tensors (very important)
	A last important isomorphism
	Partial application argument
	Examples of tensors
	Elements from category theory


	Transformation rules
	Vectors
	Vector spaces in physics
	Change of basis
	Transformation of components

	Covectors
	Change of basis
	Transformation of components

	Summary
	Physics convention

	More general tensors
	Basis of physical tensor product space
	Linear transformation
	General case



